ARTICLES

High-performance enhancement-mode GaN-based p-FETs fabricated with O₃-Al₂O₃/HfO₂-stacked gate dielectric

Hao Jin^{1, 2}, Sen Huang^{1, 2, †}, Qimeng Jiang^{1, †}, Yingjie Wang^{1, 2}, Jie Fan¹, Haibo Yin^{1, 2}, Xinhua Wang^{1, 2}, Ke Wei^{1, 2}, Jianxun Liu³, Yaozong Zhong³, Qian Sun³, and Xinyu Liu^{1, 2}

¹Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China ²University of Chinese Academy of Sciences, Beijing 100049, China ³Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

Abstract: In this letter, an enhancement-mode (E-mode) GaN p-channel field-effect transistor (p-FET) with a high current density of –4.9 mA/mm based on a O_3 -Al₂ O_3 /HfO₂ (5/15 nm) stacked gate dielectric was demonstrated on a p⁺⁺-GaN/p-GaN/AlN/AlGaN/AlN/GaN/Si heterostructure. Attributed to the p⁺⁺-GaN capping layer, a good linear ohmic *I*–*V* characteristic featuring a low-contact resistivity (ρ_c) of 1.34 × 10⁻⁴ Ω -cm² was obtained. High gate leakage associated with the HfO₂ high-*k* gate dielectric was effectively blocked by the 5-nm O_3 -Al₂ O_3 insertion layer grown by atomic layer deposition, contributing to a high I_{ON}/I_{OFF} ratio of 6 × 10⁶ and a remarkably reduced subthreshold swing (SS) in the fabricated p-FETs. The proposed structure is compelling for energy-efficient GaN complementary logic (CL) circuits.

Key words: GaN; p-FETs; enhancement-mode; HfO₂; subthreshold swing

Citation: H Jin, S Huang, Q M Jiang, Y J Wang, J Fan, H B Yin, X H Wang, K Wei, J X Liu, Y Z Zhong, Q Sun, and X Y Liu, Highperformance enhancement-mode GaN-based p-FETs fabricated with O₃-Al₂O₃/HfO₂-stacked gate dielectric[J]. *J. Semicond.*, 2023, 44(10), 102801. https://doi.org/10.1088/1674-4926/44/10/102801

1. Introduction

In last few decades, GaN power high-electron-mobility transistors (HEMTs) have become an indispensable core component of power electronics, owing to their high breakdown voltage and fast switching speed^[1-6]. To further enhance the reliability and speed of the device, monolithically integrated GaN-based peripheral circuits composed of logic modules that serve as the driving, control, sensing and protection units, are highly desirable. One of the promising technologies, especially for high-temperature operation application, is the GaN-based CMOS platform, which delivers extremely low power consumption^[7]. The key issue of GaN-based CMOS technology is the low current density of the GaN p-FETs, which ascribe to the high activation energy (~170 meV) of Mg doping, low hole mobility and the difficulty in forming ohmic contact due to the p-GaN deep valance bands^[8–10]. To improve the conduction characteristic of the GaN p-channel device, polarization-enhanced epitaxy technology was adopted to induce high-density two-dimensional hole gas (2DHG), which can effectively increase carrier concentration^[11–14]. At the same time, in order to achieve the enhancement mode (Emode), a partial recessed p-GaN channel in the gate region is needed^[15-22].

As the core component of the pull-up device in GaNbased CMOS logic circuit topology, the p-FETs with a low subthreshold slope (SS) are beneficial for achieving lower power

Correspondence to: S Huang, huangsen@ime.ac.cn; Q M Jiang, jiangqimeng@ime.ac.cn Received 10 FEBRUARY 2023; Revised 27 MARCH 2023.

©2023 Chinese Institute of Electronics

consumption of the logic circuit due to the operating voltage reduction^[23]. A high-*k* gate dielectric is a facile method that reduces the SS of the devices. Among all the high-*k* dielectrics, HfO₂ is favorable due to its large dielectric constant (~25) and perfect compatibility with CMOS fabrication processes^[24]. Therefore, HfO₂ is selected as the high-*k* dielectric material for our fabricated GaN p-FETs.

In this work, E-mode GaN p-FETs with O_3 -Al₂ O_3 /Hf O_2 stacked gate dielectric are fabricated on a p⁺⁺-GaN/p-GaN/AlN/AlGaN/AlN/GaN heterostructure grown on a Si substrate. The O_3 -Al₂ O_3 insertion layer effectively improves the voltage blocking of the stack dielectric and reduces the leakage current. Meanwhile, the introduction of Hf O_2 reduces the SS of GaN p-FETs from 161 mV/dec to 107 mV/dec, which significantly improves the current performance of the GaN p-FETs. The improved subthreshold performance of the p-FETs enables high ON-OFF current ratio with low operating voltage, which is beneficial for reducing the power consumption of GaN-based CMOS logic driver circuits.

2. Epitaxial structure and dielectric leakage characterization

Fig. 1(a) shows the cross-sectional schematic of the fabricated metal-oxide-semiconductor (MOS) device for dielectric leakage characterization. The employed p⁺⁺-GaN/p-GaN/AIN/AIGaN/AIN/GaN heterostructure was grown by metal-organic chemical vapor deposition (MOCVD) on the Si substrate. It consists of a ~10-nm p⁺⁺-GaN capping layer (Mg: 2×10^{20} cm⁻³), a ~85-nm p-GaN layer (Mg: (4–6) $\times 10^{19}$ cm⁻³), a ~2-nm AIN polarization enhancement layer, a ~3-nm Al_{0.25}Ga_{0.75}N ultrathin barrier layer (UTB), a ~1-nm AIN interface enhancement layer, a 300-nm unintentionally doped

Fig. 1. (Color online) (a) Cross-sectional schematic and (b) current density-voltage curves of the MOS device on the p⁺⁺-GaN/p-GaN/AIN/AIGaN/AIN/GaN heterostructure.

Fig. 2. (Color online) (a) Cross-sectional schematic of the fabricate E-mode GaN p-FETs. (b) TLM analysis of the ohmic contact. (c) Benchmarking the *R*_c and hole sheet density of the fabricated GaN p-FET with some state-of-the-art GaN p-FETs. (d) Depth profile of the gate recess trench measured by the atomic force microscope. The inset figure presents measured resistances as a function of ohmic metal spacing.

GaN n-channel layer and a 3.6- μ m (Al)GaN high-resistivity buffer layer with C doping. The 3-nm UTB-Al_{0.25}Ga_{0.75}N layer is intended for a AlGaN-recess-free E-mode n-FETs for p/n-FETs integration^[25]. The hole sheet density and mobility were measured to be 2.3 × 10¹³ cm⁻² and 11.5 cm²/(V·s) respectively by Van der Pauw Hall measurement. The gate dielectrics for comparison are a 20-nm HfO₂, 20-nm O₃-Al₂O₃ and an O₃-Al₂O₃/HfO₂ (5/15 nm) stack, both of which are grown by atomic layer deposition (ALD).

The leakage characteristic of different dielectrics is shown in Fig. 1(b). The 20-nm HfO₂ shows a lower breakdown voltage and higher leakage current density than that of the 20-nm O₃-Al₂O₃ due to its lower band gap (HfO₂: ~5.8 eV, O₃-Al₂O₃: ~7.1 eV) and valence band offset from p-GaN (p-GaN/HfO₂: ~0.3 eV, p-GaN/O₃-Al₂O₃: ~1.7 eV)^[26, 27]. The introduction of the 5-nm O₃-Al₂O₃ insertion layer can effectively reduce the leakage of the O₃-Al₂O₃/HfO₂ stack and improve its voltage-blocking capability.

3. Device fabrication and characteristics of Emode GaN p-FETs

Fig. 2(a) exhibits the cross-sectional schematic of the fabricated E-mode GaN p-FETs. Device fabrication commenced with source/drain definition by photolithography, followed by Ni/Au (50/100 nm) metal stack evaporation. Rapid thermal annealing (RTA) in the air environment at 550 °C for 60 s was performed after lift-off. Thanks to the p⁺⁺-GaN capping layer, linear *I*–*V* curves were obtained. The contact resistance (R_c) of 18.86 Ω -mm ($\rho_c = 1.34 \times 10^{-4} \Omega \cdot \text{cm}^2$) and sheet resistance (R_{sh}) of 2.65 × 10⁴ Ω /sq are determined by the transfer length method (TLM) respectively, as shown in Fig. 2(b). Fig. 2(c) benchmarks the R_c and hole sheet density of the heterostructure used in this work with other similar III-nitride heterostructures. The low R_c achieved is comparable to state-ofthe-art results.

The mesa isolation was implemented by the Cl₂/BCl₃-

Fig. 3. (Color online) (a) DC transfer and (b) SS vs I_D plot of fabricated GaN p-FETs with the O₃-Al₂O₃ and O₃-Al₂O₃/HfO₂ stack as the gate dielectric.

Fig. 4. (Color online) (a) DC output and (b) OFF-state characteristics of fabricated GaN p-FETs with the O₃-Al₂O₃ and O₃-Al₂O₃/HfO₂ stack as the gate dielectric.

based inductively coupled plasma-reactive ion etching (ICP-RIE) process to the GaN buffer. A two-step gate etching process was adopted to overcome the decreased OFF-state blocking voltage associated with the p++-GaN capping layer^[28]. The remaining p-GaN under the central gate trench is 8 nm as confirmed by atomic force microscopy (AFM), as shown in Fig. 2(d). The two-step gate trench was then subjected to an UV/O₃ treatment at 100 °C for 30 min. Prior to the deposition of the gate dielectric, in-situ remote plasma pretreatments $(RPP)^{[29]}$ by using NH₃/N₂ plasmas applied were conducted. After the source/drain region opening, the GaN p-FET fabrication was completed with an evaporated Ni/Au (40/400 nm) metal stack as the gate metal and probing pad. For comparison, the devices using the 20-nm O₃-Al₂O₃ and the O₃-Al₂O₃/HfO₂ (5/15 nm) stack as the gate dielectric are both fabricated. The fabricated GaN p-FETs possess a gate length (L_G) of 2 μ m, an equivalent gate to source length (L_{GS}) and a gate to drain length (L_{GD}) of 5 μ m.

Fig. 3(a) shows DC transfer characteristics of the fabricated GaN p-FETs with an O₃-Al₂O₃ and O₃-Al₂O₃/HfO₂ stack as the gate dielectric at V_{DS} of -1 V. Since the 8-nm p-GaN layer only remained at the bottom of the gate trench featuring the weakening of the built-in polarization, both of the devices behave as E-modes and exhibit a high I_{ON}/I_{OFF} ratio of 6×10^6 . Thanks to the high-quality O₃-Al₂O₃ insertion layer, the device with the O₃-Al₂O₃/HfO₂ gate stack shows a low gate leakage below 10⁻⁶ mA/mm, the same as the device with 20-nm O₃-Al₂O₃ gate dielectric. In addition, a steeper transfer curve is obtained due to the high dielectric constant of HfO₂ for the GaN p-FET with the O₃-Al₂O₃/HfO₂ gate stack. Its minimum SS is extracted to be 107 mV/dec, which is significantly lower than the 161 mV/dec of the comparison device (see Fig. 3(b)).

Table 1. Benchmark of GaN-based p-FETs.

	V _{th} (V)	I _{d,max} (mA/mm)	I _{ON} /I _{OFF}	SS (mV/dec)
MIT ^[16]	-0.5	-45	10 ⁴	800
Cornell ^[20]	-0.35	-10	10 ⁴	1027
HRL ^[22]	-0.36	-1.65	10 ⁶	304
HKUST ^[30]	-1.7	-6.1	10 ⁷	230
ASU ^[31]	-0.6	-0.2	5×10^{7}	123
This work	-0.8	-4.9	6×10^{6}	107

Fig. 4(a) depicts the output curves of the devices. Owing to the p⁺⁺-GaN cap layer of the epitaxial structure, an offset voltage, which is usually observed in $I_{DS}-V_{DS}$ curves of p-FETs fabricated on the moderate Mg-doped p-GaN layer^[31, 32], is effectively eliminated. The O₃-Al₂O₃/HfO₂-stacked device with better channel modulation capability delivers a high-saturation current density of -4.9 mA/mm and an on-resistance (R_{on}) of 0.70 kΩ·mm at $V_{GS} = -10$ V. Three-terminal OFF-state characteristics of the fabricated GaN p-FET is plotted in Fig. 4(b). A destructive hard breakdown was observed at -52 and -61 V on the devices with the O₃-Al₂O₃/HfO₂ gate stack and the O₃-Al₂O₃ gate dielectric, respectively.

Table 1 benchmarks the fabricated GaN p-FETs in this work with some other reported GaN p-FETs. Our E-mode GaN p-FETs exhibit high I_{ON}/I_{OFF} ratio and low SS.

The scaling effect on the gate length of the GaN p-FETs was also studied. Much higher $|I_{D,max}|$ and lower R_{on} are obtained (Fig. 5). By optimizing the size of the devices or directly using self-alignment structure^[16, 17], the current density of GaN p-FETs will be further improved.

4. Conclusion

In this work, the leakage characteristic of O_3 -Al₂O₃ and HfO₂ is investigated on the p-channel GaN device platform.

Fig. 5. (Color online) (a) Output characteristics for the GaN p-FET using O₃-Al₂O₃/HfO₂ as the gate stack with L_G of 1 μ m. (b) Trend of $|I_{D,max}|$ enhancement and R_{on} reduction with L_G scaling.

The introduction of the O₃-Al₂O₃ insertion layer can effectively reduce the leakage and increase the breakdown voltage of the O₃-Al₂O₃/HfO₂ stack. E-mode GaN p-FETs with an O₃-Al₂O₃/HfO₂ gate stack were fabricated on the p⁺⁺-GaN/p-GaN/AlN/AlGaN/AlN/GaN/Si heterostructure. The fabricated GaN p-FETs possess a high current density of -4.9 mA/mm, a high I_{ON}/I_{OFF} ratio of 6 × 10⁶ and a low SS of 107 mV/dec, which are promising for applications in GaN CMOS logic platforms.

Acknowledgments

This work was supported in part by the National Key Research and Development Program of China under Grant 2022YFB3604400; in part by the Youth Innovation Promotion Association of Chinese Academy Sciences (CAS); in part by CAS-Croucher Funding Scheme under Grant CAS22801; in part by National Natural Science Foundation of China under Grant 62074161, Grant 62004213, and Grant U20A20208; in part by the Beijing Municipal Science and Technology Commission project under Grant Z201100008420009 and Grant Z211100007921018; in part by the University of CAS; and in part by IMECAS-HKUST-Joint Laboratory of Microelectronics.

References

- Hoo Teo K, Zhang Y H, Chowdhury N, et al. Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. J Appl Phys, 2021, 130, 160902
- [2] Wu K F, Huang S Y, Wang W L, et al. Recent progress in III-nitride nanosheets: Properties, materials and applications. Semicond Sci Technol, 2021, 36, 123002
- [3] Jones E A, Wang F, Ozpineci B. Application-based review of GaN HFETs. 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, Knoxville, TN, USA, 2014, 24
- [4] Chen K J, Häberlen O, Lidow A, et al. GaN-on-Si power technology: Devices and applications. IEEE Trans Electron Devices, 2017, 64, 779
- [5] Amano H, Baines Y, Beam E, et al. The 2018 GaN power electronics roadmap. J Phys D: Appl Phys, 2018, 51, 163001
- [6] Wang W L, Jiang H S, Li L H, et al. Two-dimensional group-III nitrides and devices: A critical review. Rep Prog Phys, 2021, 84, 086501
- [7] Bader S J, Lee H, Chaudhuri R, et al. Prospects for wide bandgap and ultrawide bandgap CMOS devices. IEEE Trans Electron Devices, 2020, 67, 4010
- [8] Götz W, Johnson N M, Walker J, et al. Activation of acceptors in

Mg-doped GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett, 1996, 68, 667

- [9] Li S J, Sun P Y, Xing Z H, et al. Degradation mechanisms of Mgdoped GaN/AIN superlattices HEMTs under electrical stress. Appl Phys Lett, 2022, 121, 062101
- [10] Song J O, Ha J S, Seong T Y. Ohmic-contact technology for GaNbased light-emitting diodes: Role of P-type contact. IEEE Trans Electron Devices, 2010, 57, 42
- [11] Chaudhuri R, Bader S J, Chen Z, et al. A polarization-induced 2D hole gas in undoped gallium nitride quantum wells. Science, 2019, 365(6460), 1454
- [12] Zimmermann T, Neuburger M, Kunze M, et al. P-channel InGaN-HFET structure based on polarization doping. IEEE Electron Device Lett, 2004, 25, 450
- [13] Hahn H, Reuters B, Pooth A, et al. P-channel enhancement and depletion mode GaN-based HFETs with quaternary backbarriers. IEEE Trans Electron Devices, 2013, 60, 3005
- [14] Nakajima A, Sumida Y, Dhyani M H, et al. High density two-dimensional hole gas induced by negative polarization at GaN/Al-GaN heterointerface. Appl Phys Express, 2010, 3, 121004
- [15] Chowdhury N, Lemettinen J, Xie Q Y, et al. P-channel GaN transistor based on p-GaN/AlGaN/GaN on Si. IEEE Electron Device Lett, 2019, 40, 1036
- [16] Chowdhury N, Xie Q Y, Niroula J, et al. Field-induced acceptor ionization in enhancement-mode GaN p-MOSFETs. 2020 IEEE International Electron Devices Meeting (IEDM), 2021, 5.5. 1
- [17] Chowdhury N, Xie Q Y, Palacios T. Tungsten-gated GaN/AlGaN p-FET with I_{max} > 120 mA/mm on GaN-on-Si. IEEE Electron Device Lett, 2022, 43, 545
- [18] Chowdhury N, Xie Q Y, Yuan M Y, et al. First demonstration of a self-aligned GaN p-FET. 2019 IEEE International Electron Devices Meeting (IEDM), 2020, 4.6. 1
- [19] Yin Y D, Lee K B. High-performance enhancement-mode p-channel GaN MISFETs with steep subthreshold swing. IEEE Electron Device Lett, 2022, 43, 533
- [20] Bader S J, Chaudhuri R, Nomoto K, et al. Gate-recessed E-mode pchannel HFET with high on-current based on GaN/AIN 2D hole gas. IEEE Electron Device Lett, 2018, 39, 1848
- [21] Chowdhury N, Xie Q Y, Yuan M Y, et al. Regrowth-free GaN-based complementary logic on a Si substrate. IEEE Electron Device Lett, 2020, 41, 820
- [22] Chu R M, Cao Y, Chen M, et al. An experimental demonstration of GaN CMOS technology. IEEE Electron Device Lett, 2016, 37, 269
- [24] Mistry K, Allen C, Auth C, et al. A 45nm logic technology with high-k metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. 2007

Journal of Semiconductors doi: 10.1088/1674-4926/44/10/102801 5

IEEE International Electron Devices Meeting, 2008, 247

- [25] Huang S, Wang X H, Liu X Y, et al. An ultrathin-barrier AlGaN/GaN heterostructure: A recess-free technology for the fabrication and integration of GaN-based power devices and power-driven circuits. Semicond Sci Technol, 2021, 36, 044002
- [26] Huang S, Liu X Y, Wei K, et al. O₃-sourced atomic layer deposition of high quality Al₂O₃ gate dielectric for normally-off GaN metalinsulator-semiconductor high-electron-mobility transistors. Appl Phys Lett, 2015, 106, 033507
- [27] Huang H H, Fang G J, Li Y, et al. Improved and color tunable electroluminescence from n-ZnO/HfO₂/p-GaN heterojunction light emitting diodes. Appl Phys Lett, 2012, 100, 233502
- [28] Jin H, Jiang Q M, Huang S, et al. An enhancement-mode GaN p-FET with improved breakdown voltage. IEEE Electron Device Lett, 2022, 43, 1191
- [29] Guo F Q, Huang S, Wang X H, et al. Suppression of interface states between nitride-based gate dielectrics and ultrathin-barrier Al-GaN/GaN heterostructure with in situ remote plasma pretreatments. Appl Phys Lett, 2021, 118, 093503
- [30] Zheng Z Y, Song W J, Zhang L, et al. High I_{ON} and I_{ON}/I_{OFF} ratio enhancement-mode buried p-channel GaN MOSFETs on p-GaN gate power HEMT platform. IEEE Electron Device Lett, 2020, 41, 26
- [31] Yang C, Fu H Q, Peri P, et al. Enhancement-mode gate-recess-free GaN-based p-channel heterojunction field-effect transistor with ultra-low subthreshold swing. IEEE Electron Device Lett, 2021, 42, 1128
- [32] Zheng Z Y, Song W J, Zhang L, et al. Enhancement-mode GaN pchannel MOSFETs for power integration. 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2020, 525

Hao Jin received his MS degree from the Beijing Institute of Technology, Beijing, China, in 2020. He is pursuing a PhD degree at the Institute of Microelectronics, Chinese Academy of Science, Beijing. His research focuses on fabrication and monolithic integration of GaN devices.

Sen Huang received his PhD degree from Peking University, Beijing, China, in 2009. He is currently a professor with the Institute of Microelectronics, Chinese Academy of Sciences, Beijing. His current research interests include advanced design, fabrication, and characterization technologies for III–V power semiconductor or devices.

Qimeng Jiang received his PhD degree from The Hong Kong University of Science and Technology, Hong Kong, China, in 2015. He is currently a professor with the Institute of Microelectronics, Chinese Academy of Sciences, Beijing. His current research interests include advanced design and fabrication technologies for power semiconductor devices and ICs.