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Abstract: In  this  letter,  an enhancement-mode (E-mode)  GaN p-channel  field-effect  transistor  (p-FET)  with a  high current  den-
sity  of −4.9  mA/mm  based  on  a  O3-Al2O3/HfO2 (5/15  nm)  stacked  gate  dielectric  was  demonstrated  on  a  p++-GaN/p-
GaN/AlN/AlGaN/AlN/GaN/Si heterostructure. Attributed to the p++-GaN capping layer, a good linear ohmic I−V characteristic fea-
turing a low-contact resistivity (ρc)  of  1.34 × 10−4 Ω·cm2 was obtained. High gate leakage associated with the HfO2 high-k gate
dielectric was effectively blocked by the 5-nm O3-Al2O3 insertion layer grown by atomic layer deposition, contributing to a high
ION/IOFF ratio  of  6  ×  106 and  a  remarkably  reduced  subthreshold  swing  (SS)  in  the  fabricated  p-FETs.  The  proposed  structure  is
compelling for energy-efficient GaN complementary logic (CL) circuits.
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1.  Introduction

In  last  few  decades,  GaN  power  high-electron-mobility
transistors (HEMTs) have become an indispensable core com-
ponent  of  power  electronics,  owing  to  their  high  breakdown
voltage  and  fast  switching  speed[1−6].  To  further  enhance  the
reliability  and  speed  of  the  device,  monolithically  integrated
GaN-based  peripheral  circuits  composed  of  logic  modules
that  serve  as  the  driving,  control,  sensing  and  protection
units,  are  highly  desirable.  One  of  the  promising  technolo-
gies,  especially  for  high-temperature operation application,  is
the GaN-based CMOS platform,  which delivers  extremely  low
power consumption[7]. The key issue of GaN-based CMOS tech-
nology  is  the  low  current  density  of  the  GaN  p-FETs,  which
ascribe to the high activation energy (~170 meV)  of  Mg dop-
ing, low hole mobility and the difficulty in forming ohmic con-
tact  due  to  the  p-GaN  deep  valance  bands[8−10].  To  improve
the  conduction  characteristic  of  the  GaN  p-channel  device,
polarization-enhanced  epitaxy  technology  was  adopted  to
induce high-density two-dimensional  hole gas (2DHG),  which
can  effectively  increase  carrier  concentration[11−14].  At  the
same  time,  in  order  to  achieve  the  enhancement  mode  (E-
mode),  a partial  recessed p-GaN channel in the gate region is
needed[15−22].

As  the  core  component  of  the  pull-up  device  in  GaN-
based CMOS logic circuit topology, the p-FETs with a low sub-
threshold  slope  (SS)  are  beneficial  for  achieving  lower  power

consumption  of  the  logic  circuit  due  to  the  operating  volt-
age  reduction[23].  A  high-k gate  dielectric  is  a  facile  method
that  reduces  the  SS  of  the  devices.  Among  all  the  high-k
dielectrics,  HfO2 is  favorable  due  to  its  large  dielectric  con-
stant  (~25)  and  perfect  compatibility  with  CMOS  fabrication
processes[24].  Therefore,  HfO2 is  selected  as  the  high-k dielec-
tric material for our fabricated GaN p-FETs.

In  this  work,  E-mode  GaN  p-FETs  with  O3-Al2O3/HfO2-
stacked  gate  dielectric  are  fabricated  on  a  p++-GaN/p-
GaN/AlN/AlGaN/AlN/GaN  heterostructure  grown  on  a  Si  sub-
strate.  The  O3-Al2O3 insertion  layer  effectively  improves  the
voltage blocking of  the stack  dielectric  and reduces  the leak-
age current. Meanwhile, the introduction of HfO2 reduces the
SS of GaN p-FETs from 161 mV/dec to 107 mV/dec, which sig-
nificantly  improves  the  current  performance  of  the  GaN  p-
FETs.  The  improved  subthreshold  performance  of  the  p-FETs
enables  high  ON-OFF  current  ratio  with  low  operating  volt-
age,  which is  beneficial  for  reducing the  power  consumption
of GaN-based CMOS logic driver circuits. 

2.  Epitaxial structure and dielectric leakage
characterization

Fig. 1(a) shows the cross-sectional schematic of the fabri-
cated  metal–oxide–semiconductor  (MOS)  device  for  dielec-
tric  leakage  characterization.  The  employed  p++-GaN/p-
GaN/AlN/AlGaN/AlN/GaN  heterostructure  was  grown  by
metal–organic  chemical  vapor  deposition  (MOCVD)  on  the  Si
substrate.  It  consists of a ~10-nm p++-GaN capping layer (Mg:
2 × 1020 cm−3), a ~85-nm p-GaN layer (Mg: (4–6) × 1019 cm−3),
a  ~2-nm  AlN  polarization  enhancement  layer,  a  ~3-nm
Al0.25Ga0.75N  ultrathin  barrier  layer  (UTB),  a  ~1-nm  AlN  inter-
face  enhancement  layer,  a  300-nm  unintentionally  doped
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GaN  n-channel  layer  and  a  3.6-µm  (Al)GaN  high-resistivity
buffer  layer  with  C  doping.  The  3-nm  UTB-Al0.25Ga0.75N  layer
is  intended  for  a  AlGaN-recess-free  E-mode  n-FETs  for  p/n-
FETs integration[25].  The hole sheet density and mobility were
measured  to  be  2.3  ×  1013 cm−2 and  11.5  cm2/(V·s)  respec-
tively  by  Van  der  Pauw  Hall  measurement.  The  gate
dielectrics  for  comparison  are  a  20-nm  HfO2,  20-nm  O3-Al2O3

and  an  O3-Al2O3/HfO2 (5/15  nm)  stack,  both  of  which  are
grown by atomic layer deposition (ALD).

The  leakage  characteristic  of  different  dielectrics  is
shown  in Fig.  1(b).  The  20-nm  HfO2 shows  a  lower  break-
down  voltage  and  higher  leakage  current  density  than  that
of the 20-nm O3-Al2O3 due to its lower band gap (HfO2: ~5.8 eV,
O3-Al2O3:  ~7.1  eV)  and  valence  band  offset  from  p-GaN  (p-
GaN/HfO2:  ~0.3  eV,  p-GaN/O3-Al2O3:  ~1.7  eV)[26, 27].  The  intro-
duction  of  the  5-nm  O3-Al2O3 insertion  layer  can  effectively
reduce  the  leakage  of  the  O3-Al2O3/HfO2 stack  and  improve
its voltage-blocking capability. 

3.  Device fabrication and characteristics of E-
mode GaN p-FETs

Fig. 2(a) exhibits the cross-sectional schematic of the fabri-
cated  E-mode  GaN  p-FETs.  Device  fabrication  commenced
with  source/drain  definition  by  photolithography,  followed
by  Ni/Au  (50/100  nm)  metal  stack  evaporation.  Rapid  ther-
mal annealing (RTA) in the air  environment at  550 °C for  60 s
was  performed  after  lift-off.  Thanks  to  the  p++-GaN  capping
layer,  linear I−V curves  were obtained.  The contact  resistance
(Rc)  of  18.86  Ω·mm  (ρc =  1.34  ×  10−4 Ω·cm2)  and  sheet  resis-
tance  (Rsh)  of  2.65  ×  104 Ω/sq  are  determined  by  the  transfer
length  method  (TLM)  respectively,  as  shown  in Fig.  2(b).
Fig. 2(c) benchmarks the Rc and hole sheet density of the het-
erostructure used in this work with other similar Ⅲ-nitride het-
erostructures.  The  low Rc achieved  is  comparable  to  state-of-
the-art results.

The  mesa  isolation  was  implemented  by  the  Cl2/BCl3-

 

Fig.  1. (Color  online)  (a)  Cross-sectional  schematic  and  (b)  current  density−voltage  curves  of  the  MOS  device  on  the  p++-GaN/p-
GaN/AlN/AlGaN/AlN/GaN heterostructure.

 

Fig. 2. (Color online) (a) Cross-sectional schematic of the fabricate E-mode GaN p-FETs. (b) TLM analysis of the ohmic contact. (c) Benchmarking
the Rc and hole sheet density of the fabricated GaN p-FET with some state-of-the-art GaN p-FETs. (d) Depth profile of the gate recess trench mea-
sured by the atomic force microscope. The inset figure presents measured resistances as a function of ohmic metal spacing.
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based  inductively  coupled  plasma-reactive  ion  etching  (ICP-
RIE)  process  to  the  GaN  buffer.  A  two-step  gate  etching  pro-
cess was adopted to overcome the decreased OFF-state block-
ing  voltage  associated  with  the  p++-GaN  capping  layer[28].
The  remaining  p-GaN  under  the  central  gate  trench  is  8  nm
as  confirmed by  atomic  force  microscopy (AFM),  as  shown in
Fig.  2(d).  The  two-step  gate  trench  was  then  subjected  to  an
UV/O3 treatment at 100 °C for 30 min. Prior to the deposition
of  the  gate  dielectric, in-situ remote  plasma  pretreatments
(RPP)[29] by  using  NH3/N2 plasmas  applied  were  conducted.
After the source/drain region opening, the GaN p-FET fabrica-
tion  was  completed  with  an  evaporated  Ni/Au  (40/400  nm)
metal  stack as  the gate metal  and probing pad.  For  compari-
son,  the  devices  using  the  20-nm  O3-Al2O3 and  the  O3-
Al2O3/HfO2 (5/15 nm) stack as the gate dielectric are both fabri-
cated.  The  fabricated  GaN  p-FETs  possess  a  gate  length  (LG)
of  2 μm, an equivalent gate to source length (LGS)  and a gate
to drain length (LGD) of 5 μm.

Fig.  3(a)  shows  DC  transfer  characteristics  of  the  fabri-
cated  GaN  p-FETs  with  an  O3-Al2O3 and  O3-Al2O3/HfO2 stack
as  the  gate  dielectric  at VDS of –1  V.  Since  the  8-nm  p-GaN
layer  only  remained  at  the  bottom  of  the  gate  trench  featur-
ing  the  weakening  of  the  built-in  polarization,  both  of  the
devices behave as E-modes and exhibit a high ION/IOFF ratio of
6  ×  106.  Thanks  to  the  high-quality  O3-Al2O3 insertion  layer,
the  device  with  the  O3-Al2O3/HfO2 gate  stack  shows  a  low
gate  leakage  below  10−6 mA/mm,  the  same  as  the  device
with  20-nm  O3-Al2O3 gate  dielectric.  In  addition,  a  steeper
transfer  curve  is  obtained due to  the  high dielectric  constant
of  HfO2 for  the GaN p-FET with the O3-Al2O3/HfO2 gate  stack.
Its minimum SS is extracted to be 107 mV/dec, which is signifi-
cantly  lower  than  the  161  mV/dec  of  the  comparison  device
(see Fig. 3(b)).

Fig.  4(a)  depicts  the  output  curves  of  the  devices.  Owing
to  the  p++-GaN  cap  layer  of  the  epitaxial  structure,  an  offset
voltage, which is usually observed in IDS−VDS curves of p-FETs
fabricated  on  the  moderate  Mg-doped  p-GaN  layer[31, 32],  is
effectively eliminated. The O3-Al2O3/HfO2-stacked device with
better  channel  modulation  capability  delivers  a  high-satura-
tion  current  density  of −4.9  mA/mm  and  an  on-resistance
(Ron)  of  0.70  kΩ·mm  at VGS = −10  V.  Three-terminal  OFF-state
characteristics  of  the  fabricated  GaN  p-FET  is  plotted  in
Fig.  4(b).  A  destructive  hard  breakdown  was  observed  at
−52  and −61  V  on  the  devices  with  the  O3-Al2O3/HfO2 gate
stack and the O3-Al2O3 gate dielectric, respectively.

Table  1 benchmarks  the  fabricated  GaN  p-FETs  in  this
work with some other reported GaN p-FETs. Our E-mode GaN
p-FETs exhibit high ION/IOFF ratio and low SS.

The  scaling  effect  on  the  gate  length  of  the  GaN  p-FETs
was  also  studied.  Much  higher  |ID,max|  and  lower Ron are
obtained  (Fig.  5).  By  optimizing  the  size  of  the  devices  or
directly  using  self-alignment  structure[16, 17],  the  current  den-
sity of GaN p-FETs will be further improved. 

4.  Conclusion

In  this  work,  the  leakage  characteristic  of  O3-Al2O3 and
HfO2 is  investigated  on  the  p-channel  GaN  device  platform.

 

Fig. 3. (Color online) (a) DC transfer and (b) SS vs ID plot of fabricated GaN p-FETs with the O3-Al2O3 and O3-Al2O3/HfO2 stack as the gate dielectric.

 

Fig. 4. (Color online) (a) DC output and (b) OFF-state characteristics of fabricated GaN p-FETs with the O3-Al2O3 and O3-Al2O3/HfO2 stack as the
gate dielectric.

 

Table 1.   Benchmark of GaN-based p-FETs.

Vth (V) Id,max (mA/mm) ION/IOFF SS (mV/dec)

MIT[16] −0.5 −45 104 800
Cornell[20] −0.35 −10 104 1027
HRL[22] −0.36 −1.65 106 304
HKUST[30] −1.7 −6.1 107 230
ASU[31] −0.6 −0.2 5 × 107 123
This work −0.8 −4.9 6 × 106 107
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The  introduction  of  the  O3-Al2O3 insertion  layer  can  effec-
tively  reduce  the  leakage  and  increase  the  breakdown  volt-
age  of  the  O3-Al2O3/HfO2 stack.  E-mode  GaN  p-FETs  with  an
O3-Al2O3/HfO2 gate  stack  were  fabricated  on  the  p++-GaN/p-
GaN/AlN/AlGaN/AlN/GaN/Si  heterostructure.  The  fabricated
GaN p-FETs possess a high current density of −4.9 mA/mm, a
high ION/IOFF ratio  of  6  ×  106 and  a  low  SS  of  107  mV/dec,
which are promising for applications in GaN CMOS logic plat-
forms. 
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